唯传技术干货:影响LoRa网关容量的关键因素及扩容技术研究(一)

来源:唯传科技1.概述低功率广域网(LPWAN)是无线通信技术发展的新趋势。与传统网络系统不同,这些系统并不专注于为每个设备实现高数据速率。相反,为这些系统定义的关键性能指标是能效,可扩展性和覆盖率。今天的LPWAN通常被视为由终端节点设备(ED)和网关基站(BS)组成的蜂窝网络。 节点(ED)连接到基站(BS)并由其服务,从而在其周围形成星形拓扑网络。 Lora技术就是其中的典型代表。在本文中...了解详情

使用LoRa Smart Blocks Development Kit来创建LoRaWAN网络

本文将为大家介绍如何用群登科技(Acsip)的LoRa Smart Blocks Development Kit 来创建LoRaWAN网络,开发工具包含LoRa智能型积木组件及正文 Gemtek Indoor Gateway。群登这套LoRa智能型积木组件采用通过LoRa Alliance、CLAA、Actility等多重认证的S76S/S78S LoRa模块,透过感测板(Sensor Board...了解详情

Semtech推出全新工具来改善开发人员使用LoRaWAN协议的体验

高性能模拟和混合信号半导体及先进算法领先供应商SemtechCorporation(Nasdaq:SMTC)今日宣布:推出集成了Semtech的LoRa®器件和无线射频技术(LoRa技术)的微微型(picocell)网关模拟器,其中包括Linux实用程序和Microsoft®Windows支持软件,并提供一个免费的、非商用的LoRaWANTM网络服务器演示平台。全新的工具将帮助低功耗广域网(LPW...了解详情

LoRaWAN优点

导读: 目前,相对于NB-IoT,LoRa是当前最成熟、稳定的窄带物联网通讯技术,其自由组网的私有网络远优于运营商持续不断收费的NB网络,且LoRa一次组网终身不需缴费。但是应用LoRa进行物联网通讯开发难度大、周期长、进入门槛高。1 长距离得益于扩频调制和前向纠错码的增益,LoRa取得大约2倍蜂窝技术(手机)的通信距离。长距离的“优秀基因”,使LoRaWAN可以使用star(星型)网络拓扑,相比...了解详情

LoRa笔记03 LoRa sx1276 sx1278空中唤醒研究

一、前言前面在无线节点的空中唤醒技术解析中由浅入深地对空中唤醒技术做了讲解,讲地非常好,建议大家多看几遍(卧槽,谁又砸砖头!)。这篇笔记将讲LoRa节点的空中唤醒具体应用。我正在学习LoRa和LoRaWAN,基本按照 官方资料+梳理解析+相关源码 的方式来记录笔记,相信对不少同行者有所帮助,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/二、官方资料1. CAD 模式介绍When in CAD mode, the device will check a given channel to detect LoRa preamble signalCAD的功能的主要介绍是在4.1.6. LoRaTM Modem State Machine Sequences 中的 Channel Activity Detection 小节。在前文的空中唤醒的原理中,已经提到CAD功能是LoRa调制的一个特色,比普通RSSI检测方式要强大得多。随着扩频调制技术的应用,人们在确定可能低于接收机底噪声的信号是否已经使用信道时,面临重重挑战。这种情况下,使用RSSI无疑是行不通的。为了解决这个问题,可使用信道活动检测器(CAD)来检测其他LoRaTM信号。图11显示了CAD的流程:2. 操作原理介绍信道活动检测模式旨在以尽可能高的功耗效率检测无线信道上的LoRa前导码。在CAD模式下, SX1276/77/78快速扫描频段,以检测LoRa数据包前导码。在CAD过程中,将会执行以下操作: - PLL被锁定。 - 无线接收机从信道获取数据的LoRa前导码符号。在此期间的电流消耗对应指定的Rx模式电流。 - 无线接收机及PLL被关闭,调制解调器数字处理开始执行。 - 调制解调器搜索芯片所获取样本与理想前导码波形之间的关联关系。建立这样的关联关系所需的时间仅略小于一个符号周期。在此期间,电流消耗大幅度减少。 - 完成计算后,调制解调器产生CadDone中断信号。如果关联成功,则会同时产生CadDetected信号。 - 芯片恢复到待机模式。 - 如果发现前导码,清除中断,然后将芯片设置为Rx单一或连续模式,从而开始接收数据。信道活动检测时长取决于使用的LoRa调制设置。下图针对特定配置显示了典型CAD检测时长,该时长为LoRa符号周期的倍数。 CAD检测时间内, 芯片在(2SF+32)/BW秒中处于接收模式,其余时间则处于低功耗状态。3. DIO 映射CAD事件等可以利用DIO来通知给其他MCU,手册上给了映射方式。Table 18 DIO Mapping LoRaTM Mode,其中有 CadDone 事件。
Operating ModDIOx MappinDIODIODIODIODIODIO
ALModeReadCadDetecteCadDonFhssChangeChanneRxTimeouRxDon
ClkOuPllLocValidHeadeFhssChangeChanneFhssChangeChanneTxDon
1ClkOuPllLoc...
了解详情

LoRa笔记02 LoRa sx1276 sx1278的发射功率研究

1 前言发射功率也是射频基础指标,目前SX1278可以支持最大20dBm。我正在学习LoRa和LoRaWAN,基本按照 官方资料+梳理解析+相关源码 的方式来记录笔记,相信对不少同行者有所帮助,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/2 官方datasheet资料5.4.2. RF Power AmplifiersPA_HF and PA_LF are high efficiency amplifiers capable of yielding RF power programmable in 1 dB steps from -4 to+14dBm directly into a 50 ohm load with low current consumption. PA_LF covers the lower bands (up to 525 MHz), whilstPA_HF will cover the upper bands (from 779 MHz). The output power is sensitive to the power supply voltage, and typicallytheir performance is expressed at 3.3V.PA_HP (High Power), connected to the PA_BOOST pin, covers all frequency bands that the chip addresses. It permitscontinuous operation at up to +17 dBm and duty cycled operation at up to +20dBm. For full details of operation at +20dBmplease consult section 5.4.3Table 33 Power Amplifier Mode Selection Truth Table
PaSelecModPower RangPout Formul
PA_HF or PA_LF on RFO_HF or RFO_L-4 to +15dBPout=Pmax-(15-O...
了解详情

LoRa笔记01 sx1276 sx1278信号强度RSSI研究

1 前言RSSI信号强度是无线网络中特别被人关注的一个点,尤其是工程部署中。今天在了解LoRa SX1276的RSSI展示,搜寻了一些资料,做如下笔记留念。(留念。。。真没词用了吗。。。本文作者twowinter,转载请注明作者http://blog.csdn.net/iotisan/2 官方资料涉及寄存器官方英文说明5.5.5. RSSI and SNR in LoRaTM ModeThe RSSI values reported by the LoRaTM modem differ from those expressed by the FSK/OOK modem. The followingformula shows the method used to interpret the LoRaTM RSSI values:RSSI (dBm) = -157 + Rssi, (when using the High Frequency (HF) port)orRSSI (dBm) = -164 + Rssi, (when using the Low Frequency (LF) port)The same formula can be re-used to evaluate the signal strength of the received packet:Packet Strength (dBm) = -157 + Rssi, (when using the High Frequency (HF) port)orPacket Strength (dBm) = -164 + Rssi, (when using the Low Frequency (LF) port)Due to the nature of the LoRa modulation, it is possible to receive packets below the noise floor. In this situation, the SNRis used in conjunction of the PacketRssi to compute the signal strength of the received packet:Packet Strength (dBm) = -157 + PacketRssi + PacketSnr * 0.25 (when using the HF port and SNR < 0)orPacket Strength (dBm) = -164 + PacketRssi + PacketSnr * 0.25 (when using the LF port and SNR < 0)Note:1. PacketRssi (in RegPktRssiValue), is an averaged version of Rssi (in RegRssiValue). Rssi can be read at any time(during packet reception or not), and should be averaged to give more precise results.2. The constants, -157 and -164, may vary with the front-end setup of the SX1276/77/78/79 (LnaBoost =1 or 0,presence of an external LNA, mismatch at the LNA input…). It is recommended to adjust these values with a single-pointcalibration procedure to increase RSSI accuracy.3. As signal strength increases (RSSI>-100dBm), the linearity of PacketRssi is not guaranteed and results will divergefrom the ideal 1dB/dB ideal curve. When very good RSSI precision is required over the whole dynamic range of thereceiver, two options are proposed:- Rssi in RegRssiValue offers better linearity. Rssi can be sampled during the reception of the payload (betweenValidHeader and RxDone IRQ), and used to extract a more high-signal RSSI measurement- When SNR>=0, the standard formula can be adjusted to correct the slope:RSSI = -157+16/15 * PacketRssi (or RSSI = -164+16/15 * PacketRssi)中文解读常规情况下,公式是这样:RSSI (dBm) = -157 + Rssi, (高频口)RSSI (dBm) = -164 + Rssi, (低频口)另外在SNR<0的噪声环境下,要按照Packet Strength (dBm) = -157 + PacketRssi + PacketSnr * 0.25 (或者低频时,Packet Strength (dBm) = -164 + PacketRssi + PacketSnr * 0.25)这样的公式。1.PktRssiValue指单个包的信号强度,是收包这段时间内的RSSI的平均值。RssiValue指当前的信号强度。2.如果有加外部LNA,那需要做单点校准,让RSSI显示更准确。3.当信号强度超过-100dBm之后,PacketRssi就不能保证线性,结果会偏离 1dB/dB 的曲线。因此需要做一定的校正。当SNR>0时,可以参考如下公式:RSSI = -157+16/15 * PacketRssi (or RSSI = -164+16/15 * PacketRssi)。当然SNR<0时,还要注意同样做噪声干扰的校正,在公式后面 + PacketSnr * 0.25 。3 代码分析代码中处理信号强度是这样,判断频段是否大于550MHz,据此来进行高频和低频的不同偏移量的处理。int16_t SX1276ReadRssi( RadioModems_t modem ){int16_t rssi = 0;switch( modem ){case MODEM_FSK:rssi = -( SX1276Read( REG_RSSIVALUE ) >> 1 );break;case MODEM_LORA:if( SX1276.Settings.Channel > RF_MID_BAND_THRESH ){rssi = RSSI_OFFSET_HF + SX1276Read( REG_LR_RSSIVALUE );}else{rssi = RSSI_OFFSET_LF + SX1276Read( REG_LR_RSSIVALUE );}break;default:rssi = -1;break;}return rssi;}4 范例假如我们收到这样的信号值:rssi cur: 61,snr: 35pkt rssi:113因为测试频段是433MHz,且SNR>0,因此使用如下公式:RSSI = -164+16/15 * PacketRssi = -164 + 16/15 * 113 = -43.467了解详情

LORA 射频自组网 两级中继设计方案

基于sx1276lora模块,进行多个模块之间自组网,组网形式为1个集中器加多个终端。模块之间距离较远时,集中器无法直接与某个终端进行通信,其他终端本身可作为中继给该终端作为中继与集中器通信。lora调制方式,发送数据为星型通信方式,为自组网提供了便利。终端接收心跳存储typedef strucuint32_t Id;//接收的Iuint8_t Rssi;//信号强度}RECV_TERMINAL_T;...了解详情

图文介绍LoRa技术特点和系统架构

一 技术特点1、LoR2013年8月,美国升特公司(Semtech)向业界发布了一种新型的Sub-1GHz频段的扩频通信芯片,最高接收灵敏度可达-148dBm,主攻远距离低功耗的物联网无线通信市场。该技术主要工作在全球各地的ISM免费频段(即非授权频段),包括主要的433、470、868、915MHz等。与其他传统的Sub-1GHz芯片相比,LoRa芯片最高接收灵敏度提高20~25dB,体现在应用上就是拥有5~8倍传输距离的提升。LoRa技术本质上是扩频调制技术,同时结合了数字信号处理和前向纠错编码技术。此前,扩频调制技术具有长通信距离和高鲁棒特性,在军事和空间通信领域已经应用了几十年,而LoRa的意义在于首先利用扩频技术为工业产品和民用产品提供低成本的无线通信解决方案。前向纠错编码技术是给待传输数据序列中增加一些冗余信息,数据在传输进程中注入的错误码元在接收端就会被及时纠正。前向纠错编码技术可以减少数据包需要重发的需求,而且在解决由多径衰落引发的突发性误码中表现良好。一旦数据包分组建立起来,并注入前向纠错编码以保障可靠性,这些数据包就将被送到数字扩频调制器中。这一调制器将分组数据包中每一比特时间划分为众多码片,而LoRa调制码片的可配置范围为64~4 096码片/比特。通过使用高扩频因子,LoRa可将小容量数据通过大范围的无线电频谱传输出去。当用户通过频谱分析仪测量时,这些数据看上去像噪音,但区别在于噪音是不相关的,而数据具有相关性。基于这点,数据可以从噪音中提取出来。扩频因子越高,越多的数据可从噪音中提取出来,接收灵敏度就可以达到更高。因此LoRa芯片的接收灵敏度最高可达-148dBm,在20dBm的发射功率下,LoRa调制的链路预算可达168dB。2、LoRaWAN在传统的广域连接应用中,主要借助电信运营商提供的蜂窝网络进行连接,工业、能源、交通、物流等各行业广泛采用蜂窝网络实现互联。但仍有大量的设备应用是现有蜂窝网络技术无法满足的,比如水、电、气、热等计量表,市政管网、路灯、垃圾站点等公用设施,大面积畜牧养殖和农业灌溉,广泛布局且环境恶劣的气象、水文、矿井、山体数据采集,以及偏僻的户外作业等。这些类型终端若采用现有运营商蜂窝网络进行联网,可能遇到如下问题。1、信号覆盖不足:很多设备布局在人口稀少或环境复杂的区域,运营商网络覆盖盲区或信号强度不足,难以保障数据的稳定传输。2、功耗高:大量设备需要电池供电,若采用蜂窝网络则需频繁更换电池,这在很多恶劣环境下很难实现。3、费效比低:设备单次传输数据量极小,而且传输频次很低。目前蜂窝网络为高带宽设计,采用蜂窝网络要占用网络和码号资源,还会产生包月流量费用。基于以上原因,低功耗广域网技术(Low Power Wide Area Network,LPWAN)成为弥补物联网网络层短板的最佳选择。2015年3月,由Semtech牵头成立了LoRa Alliance(以下简称LoRa联盟),联盟是一个开放的非盈利性组织,目的在于加速LoRa技术全球商用化,主要发起成员还包括美国IBM、Cisco、法国Actility、荷兰皇家电信、瑞士电信等知名企业。联盟发布的LoRaWAN协议将LPWAN分成了三部分,包括节点应用、通信服务(模组和基站供应商)、云服务,数据传输过程中的通信层包括两级加密,数据通信更为安全。截止到2016年10月,联盟成员数量高达400多家,其中国家级的运营商有27家,新增运营商有法国Proximus、英国Orange、美国Comcast、日本软银、韩国SK电信、印度TATA电信等。同时,LoRa的产业链中还包括大量终端硬件厂商、模块网关厂商、软件厂商、系统集成商等,构成了完整的LoRa生态系统,大大促进LoRa技术的快速发展与生态繁盛。二 系统架构1、网络架构目前,基于L oRa技术的网络层协议主要是LoRaWAN,也有少量的非LoRaWAN协议,但是通信系统网络都是星状网架构,以及在此基础上的简化和改进。主要包括以下3种。(1)点对点通信。一点对一点通信,多见于早期的LoRa技术,A点发起,B点接收,可以回复也可以不回复确认,多组之间的频点建议分开,如图1所示。单纯利用LoRa调制灵敏度高的特性,目前主要针对特定应用和试验性质的项目。优点在于最简单,缺点在于不存在组网。图1 点对点通信(2)星状网轮询。一点对多点通信,N个从节点轮流与中心点通信,从节点上传,等待中心点收到后返回确认,然后下一个节点再开始上传,直到所有N个节点全部完成,一个循环周期结束,如图2所示。该结构本质上还属于点对点通信,但是加入了分时处理,N个从节点之间的频点可以分开,也可重复使用。优势在于单项目成本低,不足之处是仅适合从节点数量不大和网络实时性要求不高的应用。图2 星状网轮询(3)星状网并发。如图3所示,一点对多点通信,多个从节点可同时与中心点通信,从节点可随机上报数据,节点可以根据外界环境和信道阻塞自动采取跳频和速率自适应技术,逻辑上网关可以接收不同速率和不同频点的信号组合,物理上网关可以同时接收8路、16路、32路甚至更多路数据,减少了大量节点上行时冲突的概率。该系统具有极大的延拓性,可单独建网,可交叉组网,LoRa领域内目前主要指的是LoRaWAN技术。图3 星状网并发2、系统组成点对点通信和星状网轮询的系统组成比较简单,两端都是节点,分为主从。在主节点收到从节点上行数据后会发下行确认帧给从节点,然后从节点进入休眠,工作模式比较简单。这里主要对LoRaWAN星状网并发结构进行展开说明,LoRaWAN系统主要分为三部分:节点/终端、网关/基站,以及服务器,如图4所示。图4 LoRaWAN系统架构示意图节点/终端(Node):LoRa节点,代表了海量的各类传感应用,在LoRaWAN协议里被分为Class A、Class B和Class C三类不同的工作模式。Class A工作模式下节点主动上报,平时休眠,只有在固定的窗口期才能接收网关下行数据。Class A的优势是功耗极低,比非LoRaWAN的LoRa节点功耗更低,比如针对水表应用的10年以上工作寿命通常就是基于Class A实现的。ClassB模式是固定周期时间同步,在固定周期内可以随机确定窗口期接收网关下行数据,兼顾实时性和低功耗,特点是对时间同步要求很高。Class C模式是常发常收模式,节点不考虑功耗,随时可以接收网关下行数据,实时性最好,适合不考虑功耗或需要大量下行数据控制的应用,比如智能电表或智能路灯控制。网关/基站(Gateway):网关是建设LoRaWAN网络的关键设备,目的是缓解海量节点数据上报所引发的并发冲突。主要特点如下:1)兼容性强,所有符合LoRaWAN协议的应用都可以接入;2)接入灵活,单网关可接入几十到几万个节点,节点随机入网,数目可延拓;3)并发性强,网关最少可支持8频点,同时随机8路数据并发,频点可扩展;4)可实现全双工通信,上下行并发不冲突,实效性强;5)灵敏度高,同速率下比非LoRaWAN设备的灵敏度更高;6)网络拓扑简单,星状网络可靠性更高,功耗更低;7)网络建设成本和运营成本很低。服务器(Server):负责LoRaWAN系统的管理和数据解析,主要的控制指令都由服务器端下达。根据不同的功能,分为:网络服务器(Network Server)与网关通信实现LoRaWAN数据包的解析及下行数据打包,与应用服务器通信生成网络地址和ID等密钥;应用服务器(Application Server)负责负载数据的加密和解密,以及部分密钥的生成;客户服务器(Client Server)是用户开发的基于B/S或C/S架构的服务器,主要处理具体的应用业务和数据呈现。LoRaWAN系统的优势包括:覆盖范围广,节省网络优化和施工成本,减少现场施工复杂度;服务器端鉴权可实现交叉覆盖,减少覆盖盲点;服务器端统筹管理,提高信道利用率,增加系统容量; 网关多路并发减少冲突,支持节点跳频,增加系统容量;节点速率自适应(Adaptive Data Rate)降低功耗和并发冲突,增加容量;安全性高,两级AES-128(Advanced Encryption Standard-128)数据加密;星状网络结构提高鲁棒性;LoRaWAN协议标准化。三、展望未来LoRaWAN的未来非常值得期待,短期可预见的是基于LoRaWAN的定位技术。2016年,Semtech宣布了LoRaWAN支持定位的应用,目前有少量企业从事利用RSSI为基础附加参数修正的定位研究,但精度都不高。而基于Time Difference of Arrival(TDOA)的多LoRaWAN基站测量定位技术更具有商用化前景,理论精度可达50m以内,实用性更高。依照普通LoRaWAN节点平均休眠电流3μA、时间同步、无需增加其他定位芯片的特性,LoRaWAN完全有希望大规模代替现有的某些定位技术。较远的距离+低功耗+低成本+可室内室外定位的组合,是LoRaWAN有别于其他定位技术的优势。2016年是窄带物联网技术国内商用化元年,未来对LoRaWAN会形成一定挑战和竞争,而LoRa相对窄带物联技术已有成熟商用案例。窄带物联技术拥有运营商的强力支持,但LoRaWAN不会被轻易取代,具有某些方面的先天优势。LoRaWAN允许企业搭建属于自己的私有网络,很多企业并不愿意把私有数据给别人,所以在投入成本可接受的情况下,企业宁愿部署自己的私有网络并独立运营,私有网络的诱惑力巨大。物联网技术的发展日新月异,每种技术路线都有其优势领域和不足之处,未来的技术接受程度如何,关键还是要靠市场来进行选择,但最终受益的肯定是整个产业链和用户。目前,相对于NB-IoT,LoRa是当前最成熟、稳定的窄带物联网通讯技术,其自由组网的私有网络远优于运营商持续不断收费的NB网络,且LoRa一次组网终身不需缴费。但是应用LoRa进行物联网通讯开发难度大、周期长、进入门槛高。据了解,为降低物联网行业创业者进入门槛,协成智慧提供了一整套成熟LoRaWAN源代码+LoRa Gateway网关定制方案,极大缩减了创业者在物联网链路调通上所耗费的半年周期与巨额开发代价,便于快速切入物联网具体应用,打造属于自己的独立物联网运营品牌。了解详情

【典型案例】LoRa无线模块在温控器中的应用实例

其实无线技术很早就已经在热计量等领域有过不少的尝试,但为何迟迟未得到很好的普及?早在2005年,国家就发文推广对供热按用热量进行计量收费管理的制度,但历经十几年,由于分户计量实施难度大,技术门槛高,施工成本居高不下等诸多原因,进展缓慢,其实该情况不仅存在于热计量,在许多温控仪表、能源计量、能效管理的类似应用中同样存在。无线技术的推出,包括433、zigbee等无线方案的逐步完善,才逐步解决此类问题...了解详情

3分钟看懂LoRa与NB-IoT在智慧城市领域的应用

随着物联网技术的不断成熟,物联网的不断商用,行业巨头纷纷花大手笔进行物联网建设,抢占物联网市场。这个让中国移动花下395亿的NB-IoT是什么,在智慧城市领域中发挥怎样的作用?中瑞思创作为全球领先的商业智能方案提供商,在物联网智慧城市领域有一定建树,在此,向大家介绍LoRa、NB-IoT在智慧城市领域的具体应用!智慧城市技术架构首先,我们整理一下物联网架构。物联网(Internet of things,IOT),主要的结构有三层:感知层、网络层、应用层。一、感知层(信息获取层),即利用 RFID、传感器等随时随地获取物体的信息;二、网络层(信息传输层),通过各种电信网络与互联网的融合,将物体的信息实时准确地传递出去;三、应用层(信息处理层),把感知层得到的信息进行处理,实现智能化识别、定位、跟踪、监控和管理等实际应用。其中LoRa、NB-IoT均属于物联网网络层技术范畴,是最有发展前景的两个低功耗广域网通信技术。低功耗广域网(Low Power Wide Area Network,LPWAN),是一种可以实现低带宽、低功耗、远距离、大量连接的物联网通信技术,其最大的特点是实现了远距离、低功耗。LPWAN可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱下,3GPP支持的2G/3G/4G蜂窝通信技术,比如NB-IoT、EC-GSM、LTE Cat-m等。注:3GPP:《第三代伙伴计划协议》蜂窝通信技术,又称移动通信技术LoRa VS NB-IoTLoRa、NB-IoT是目前最有发展前景的两个低功耗广域网通信技术,都可以实现物联网无线传输中的远距离、低功耗要求,在智慧城市应用中,他们的具体区别是什么?LoRa(Long Range)是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。LoRa网络主要由终端(可内置LoRa模块)、网关(或称基站)、Server和云四部分组成,应用数据可双向传输。NB-IOT(Narrow Band Internet of Things, NB-IoT,又称窄带物联网),是由3GPP标准化组织定义的一种技术标准,是一种专为物联网设计的窄带射频技术。LoRa 、NB-IoT参数对比NB-IOTLoRa技术特点蜂窝线性扩频网络部署与现有蜂窝基站复用独立建网频段运营商频段150MHz到1GHz传输距离远距离远距离(1-20km)速率连接数量200k/cell200-300k/hub终端电池工作时间约10年约10年成本模块5-10$模块约5$总而言之,LoRa、NB-IoT最大的区别在于频段,服务质量和成本。简单地说,LoRa工作在1GHz以下的非授权频段,故在应用时不需要额外付费。NB-IoT和蜂窝通信使用1GHz以下的授权频段,但能保证服务质量。这两者并不能说哪一种技术比较好,只能说有各自不同的适用场景。应用场景LoRa、NB-IoT两种技术具有不同的技术和商业特性,所以在应用场景方面会有不同。下面将通过中瑞思创的具体应用实例来分析LoRa和NB-IoT 各自适合的应用场景。A:智能井盖管理方案中瑞思创在G20期间的地下管建安保方案获得了物联网界的好评,同时也不断优化智能井盖管理相关方案。智能井盖管理方案最主要的需求是:高速率的数据传输、频繁的通信和低延迟。窨井井盖管理部门需要对井盖网络进行实时监控以便发现隐患时及时处理,且井盖监测标签一般安装在人口密集的地区的固定位置,所以对于运营商布网也较为容易。对于智能井盖管理方案这种对于通信质量高要求的应用场景,NB-IoT更适合。B:园林绿化智能监测中瑞思创也有很多LoRa应用案例,比如园林绿化智能检测、城市部件姿态管理、智能排水监测、低洼积水智能化监测等。园林绿化智能监测方案最主要的需求是:低功耗、低成本。对于园林绿化管理部门而言,管控范围广,对于信息传输的速率、频率、延迟率等要求没有智能井盖高,但是对于通信技术的功耗方面需要很好地把控。LoRa十分适用于这样的场景。了解详情

创建你自己的私有 LoRa 网络

有大量关于 LoR的讨论,低功耗、广域网保证了几公里范围内的通信,因此非常适合网联网通信。电信运营商正在推出 LoRa 网络,由于 LoRa 在开放的频谱范围内运行,你还可以设置自己的网络。本文讨论了构建私有 LoRa 网络,以及如何使用网络将数据从 ARM mbed 终端节点发送到云端。关于 LoRa 与 LoRaWAN 的注意事项:从技术上讲,在本文中我们正在构建一个 LoRaWAN 网络。...了解详情

博立信(Polysense)发布全国首个大学和研究机构物联网套件项目计划

2017年7月28日,博立信(Polysense)科技公司今天宣布推出首个针对全国大学和科研机构的物联网LoRa套件项目计划。 “LoRa通讯和传感大学物联网项目计划”将为大学生和科研人员了解和使用最先进的通信和传感技术提供必要的工具和教育学习的机会。 其开创性计划将着重于使用LoRaWAN™的低功耗广域网(LPWAN)通信协议。 LPWAN是一种专为万物互联所设计的,采用低功耗、长距离、低速率通...了解详情

COT LoRa 2.4GHz能传输多远、定位多准,我们用实测数据说话

SX1280(LoRa 2.4G)来了、COT协议栈来了、到底可以传输多远、定位到底有多准,是大家关心的问题。基于SX1280(LoRa 2.4G)COT-MV1模组可以传输多远、定位精度如何,是目前大家关心的问题。传输距离在无线电领域是一个比较模糊难以定义的问题,受到诸多因素影响,如发射功率、接收灵敏度、天线形式、通讯速率、设备使用的地理及建筑环境、设备使用场所的电磁环境等。为保证距离评估具有典型意义,本次测试采用室外测试、室内测试二种结构阐述可以传多远,定多准。通过测试LORA 2.4G 在12.5dBm发射功率情况下,可以实现家庭、别墅、单一楼层无盲区覆盖满足大多数应用场景。可以满足厂区、农场、高尔夫球场等大多数商业应用场景。适合区域微功率无线信号覆盖。为什么需要区域微功率覆盖,这在大多数实时物联网、并有边缘计算需求的领域是非常需要的,例如智能家居中的门磁可以实现一节CR2450电池能连续工作大于10年,这在项目商业应用是非常重要的需求。低功率、远距离带来的第二个好处是,传统纽扣电池可以使用,使商业应用产品的设计更加方便。1.室外通讯可靠性测试测试目的:测量在室外道路工况下的通信距离与丢包率、RSSI之间的关系发射功率:12.5dBm测试方法:使用2个COT-MV1,一收一发,发送节点位置固定,位于道路边缘,逐渐拉远接收节点的距离,接收节点亦位于道路边缘。收发节点均架设在1.6m高的三角支架上。发送节点以50%占空比连续发送数据包,接收点接收并统计信息,连续统计1000个数据包。改变参数进行多轮测试。测试场地:测试结果:测试结果描述:见上表可见在通讯距离400米内,使用SF5可以可靠通讯。测试结果描述:见上表可见在通讯距离600米内,使用SF7可以可靠通讯。测试结果描述:见上表可见在通讯距离860米内,使用SF9可以可靠通讯,并有一定dBm冗余。测试结果描述:见上表可见在通讯距离800米内,使用SF12可以可靠通讯,并有一定冗余。2.室外通讯距离测试测试目的:一个发送节点位于较高位置的楼顶,信号的覆盖范围,以及信号的绕射能力。发射功率:12.5dBm测试方法:使用2个COT-MV1,一收一发,发送节点位置固定,位于闽江学院教学大楼2号楼顶外延平台,接收节点架设在1.6m高的三脚架上,改变接收节点位置。发送节点以50%占空比连续发送数据包,接收点接收并统计信息,连续统计1000个数据包。改变参数进行多轮测试。测试场地:测试结果:3.测距测试(走廊)测试目的:测试COT-MV1模组在室内的测距精度以及测距能力测试方法:使用2个COT-MV1,进行测距,固定一个节点,移动另外一个节点,每个测距点连续测试大于10次,求出平均值等统计信息。比较实际测距结果跟实际距离之间的偏差情况。测试场地:办公楼6楼长廊,发送节点使用三脚架架高1.6m,接收节点位于离地面约50cm。测试结果:4.测距测试(空旷)测试目的:测试COT-MV1模组在室外的测距精度以及测距能力测试方法:使用2个COT-MV1,进行测距,固定一个节点,移动另外一个节点,每个测距点连续测试大于10次,求出平均值。比较实际测距结果跟实际距离之间的偏差情况。测试场地:室外田径场,发送节点使用三脚架架高1.6m,接收节点位于离地面约30cm。测试结果:测距测试结果统计比较见图:测距测试总结:1)测距得到的距离值,总是比实际值偏低。室内走廊与室外空旷环境,测距效果,差距不大。2)从绝对误差看,当实际距离在20米时,绝对误差达到最大值,接近10米,随着实际距离增加,误差值降低(小于6米)。这主要是由于COT-MV1的测距分辨率问题,导致在近场近距环境下,测距值与实际值偏差较大导致,这种偏差在20米时达到峰值。4)从相对误差看,随着距离增加,相对误差则逐渐降低。5)样本标准差体现了测距样本与均值的偏差离散度,从测试图可以看出,样本标准差呈现了波动的形态,当总体趋势来看,随着距离增加,离散度增加。6)从样本标准差图可以看出,无论是室内环境还是室外环境,圆极化天线的测试结果离散度都比单极化天线要好,也即:圆极化天线可以保持较好的测距一致性。从测距的平均值和绝对误差来看,两种天线则没有明显的差别。5.COT-MV1模组COT-MV1模组由Apollo mcu+SX1280 2.4GHz radio构成,模组长宽高:18x12x2.7(mm),采用邮票孔封装,提供了一路SPI/I2C、一路UART(最高波特率可达921600bps)、一路SWD接口(支持SWIO调试)、32路可编程的通用输入输出接口(GPIO)5.1.主要特性5.2.模组引脚分布图模组引脚图(顶视图)5.3.模块封装图5.2 推荐钢网尺寸图(单位:毫米)5.4.机械尺寸机械结构尺寸图(单位:毫米)6.COT-MV1开发套件基于COT-MV1模组系列开发套件提供一个开箱即用的窄带物联网解决方案,产品可以快速、安全地进行区域窄带物联网产品开发。套件包括COT-MV1模块转接板、开发底板、单极化天线、圆极化天线、编程器转接板、USB转串口线各二套及快速应用开发SDK,SDK内置COT协议栈及大量实用API和例程。COT-M SDK了解详情

LoRa超远距470模块在故障指示器中的应用

智能电网的改造,已经初步实现电网线路故障的精准定位,至少让过去提着手电漫山风雪中寻找故障点的巡线员轻松了不少,看看如何实现。我们经历过的停电,时间都并不太长,城市的任何一处电网故障都会得到抢修员的及时补救,但是,跨越大山大河输送到县镇里的电如果停了,巡线员也要再沿着大河大山循线排查,在古代的烽火台已经被戍边哨所的无线电取代现在,无线故障指示器也构筑智能电网中的新烽火台。图1群山大河间的电塔我国郊区...了解详情

干货分享:信锐Lora物联方案在3W北京中关村店的测试记录

作者:老韩格物资讯物联网现在已经被吹上了天,它到底能不能落地,以及适合在哪落地,很多人其实根本不知道。格物资讯认为,对于物联网市场中需求导向的部分,“物联网+空间管理”是短期比较明显的热点。所以当得知信锐已经提前规划开发了一套产品方案,我们在第一时间抢来一个网关和两个排插进行评估。为什么测信锐的产品方案格物资讯长期关注中小“互联网+”场景的IT需求发展,在我们的客户样本库中,其实已经有一部分业务比较超前的企业部署了物联网方案,承载着关键应用。而在针对于此的吐槽中,最大的不满往往是业务可用性不高,透过现象看本质,其实是管道的不可靠。甚至有管理者这么说过:智能终端或者APP这种接触最终用户的东西,一定得搞互联网的来搞,他们能把体验玩出花来;IoT平台、核心组网,这些东西还是得靠传统数通厂商。精辟!这样的客户绝对是活明白了,他从血的教训中明白了互联网的产品开发套路搞设备是行不通的,试错成本没白交!在《小米智能插座是怎样对WiFi发起慢性DDoS的》这篇文章里我们写过这样一句话:“其实市场上大量智能家居设备对WiFi的友好性还不如小米智能插线板。原因很简单,他们团队里大多就没有懂802.11的人。” 在格物资讯看来,现在大量号称能提供物联网空间管理方案的企业也存在一样的问题,眼瞅着Lora要替代ZigBee了没错,但请问你们真有能力搞Lora么?或者说,有几个团队能养精通Lora、做出高品质回传设备的人?于是我们和越来越多的客户一直在等待传统数通厂商推自己的IoT平台+组网方案,去年国内WLAN市场份额前五的厂商(依次新华三、锐捷、华为、信锐、思科,from IDC)中,目前只看到信锐在空间管理领域准备推出方案,所以除了信锐没得选。特别提示,因为研发阶段的产品未知且不可控的因素太多,我们决定站在最终客户角度去做黑盒应用测试,去验证一些自己感兴趣的问题,同时把遇到的问题反馈给信锐。这套方案本身仍处于开发阶段,还在不停迭代更新,所以测试结果仅代表目前我们手里的版本。一个网关带一个店是怎样的体验和很多对Lora存在期待的客户一样,我们最最关心的当然是Lora的信号覆盖能力。所以简单熟悉了信锐这套产品后,马上拿到真实场景进行测试。第一个测试环境是3W咖啡北京中关村店,这是个1200多平的三层小楼,其中1、2两层是咖啡区域,3层是办公空间。平面图如下。图纸很规整,有WiFi项目经验的人都能看出位于2层的C点是放置Lora网关的最优之选;而位于3层机房内的A点则是放置Lora网关最不合理的选择,和E、F有着最远的店内直线距离,信号要跨越两层楼板和无数道承重墙。梦想总是要有的,所以肯定要先把网关放在A点了……测试结果是排插放在E和F连不到网关,其它地方都没问题。不过在F点,如果把排插拿到高一些空旷一些的位置,就能顺利建立连接并且正常远程控制,可见这里是信号边缘。而当把网关放在C点时,排插在其他所有测试点都正常连接、正常工作。总体说来,我们对测试结果还是感到比较意外的。可以确定当规划部署比较合理且带机量不成为瓶颈的前提下,一个信锐的Lora网关就可以覆盖3W北京中关村店完整三层楼1200多平的面积,这就是满分,比通常ZigBee的方案完美了不知道多少倍。这次测试结果也令人更加坚信,Lora才是真正适合承载空间管理业务的最佳管道。之前不管WiFi、蓝牙还是ZigBee,在实际场景中技术优势都会缩小、技术缺陷都会被放大,整体效果可能是负的;直到Lora出现,才让客户真正能充分感受到技术进步带来的红利。先写这么多,还有其它场景的测试数据以及感受、问题、分析,后面慢慢发。了解详情

认知计算、区块链IoT、物联网安全…看懂的人将控制未来

2016年是物联网令人兴奋的一年,几乎每个行业都在投资物联网。目前B2C消费产品占据物联网市场超过半壁江山,但是根据IDC的预测,到2020年,物联网市场的80%以上将用于B2B应用。当代世界,各种前沿科技层出不穷,形成了人工智能、虚拟现实、区块链等相互叠加的科技爆炸时代。借由这些新技术的应用,物联网将创造新的商业模式、新的工作流程、新的生产力引擎以便形成更好的成本控制和用户体验。硅谷知名投资人吴...了解详情

共享单车上的智能锁,做出来有多难?

共享单车作为现阶段的资本风口,媒体对共享单车的兴趣和报道渐渐多了起来,有关注的同学可能早早就看过这些文章是这样介绍单车上的智能锁的,“技术实现手段也不难:在电动车锁里加上传感器、GPS、3G网络和芯片……”,事实上真的像众多报道中所描述的如此“简单”吗?单车联网的核心必是智能锁在探讨共享单车上智能锁要怎样做出来前,我们应该先弄明白:共享单车是否非要智能锁不可?在如今市场出现的“百车大战”中,OFO...了解详情