一文了解LoRa与LoRaWAN差异及市场前景

总体介绍随着物联网技术的飞速发展,NB-IoT、LoRa、SigFox等技术名词时不时出现在我们的视野中,对普通读者或者刚刚接触物联网领域的人来说,在一大堆名词面前可能会混淆。本文资本论将针对LoRa和LoRaWN做细致的介绍与比较。总体而言,LoRa仅包含链路层协议,并且非常适用于节点间的P2P通信;同时,LoRa模块也比LoRaWAN便宜一点;LoRaWAN也包含网络层,因此可以将信息发送到任...了解详情

方案 | 经典的LoRa无线节能组网

LoRa无线通信协议的优势是距离远却能做到低功耗、但最大的不足就是传输速率慢、鉴于LoRa的长距离和低速率,数据采集器和iNode无线节点,它们可以组织成星型组网,如果保留的slot过少,需要重新分配slot。一、 典型的LoRa无线网络LoRa(Long Rang)无线通信协议是一种长距离的无线通信技术,它最大的优点是距离远(空旷距离可达15kM),同时低功耗;当然,它也有不足的地方,那就是传输...了解详情

阿里物联网推出LoRaWAN开放式实验平台

摘要: 本文介绍了基于loraserver和uDC的LoRaWAN开发平台,基于该平台用户无需投入硬件即可在设备端和服务端进行,极大的降低了入门和开发门槛。点此查看原文:http://click.aliyun.com/m/43348本文旨在介绍AliOS Things的LoRaWAN开放式实验平台和具体使用方法,通过这些介绍用户可以在没有节点和网关,没有架设server的情况下完成对节点的远程调...了解详情

干货案例:智能电机温度在线监测方案(全部开源+设计实施方案)

来源物联网应该这样做一、系统架构图二、应用层2.1、人机交互满足网关设备与扎花厂在同一局域网内,用户即可通过访问浏览器一样查看当前电机温度及设置预警参数。2.2、用户登录界面打开浏览器访问IP地址“192.168.XX.XX”进入用户登录界面如上图所示输入用户名“admin”输入密码“123456”点击确认进行界面切换/点击取消进行重新输入2.3、温度实时数据显示界面电机编号:温度传感器与相对应电机的编码,有效范围(01-50)温度一:单台电机温度传感器一的实时值温度二:单台电机温度传感器二的实时值温度三:单台电机温度传感器三的实时值温度有效值:当三个传感器正常时,显示其平均值,当一只出现故障时,去除错误数据,进行平均计算当前状态:未超过上限设定值为“正常”,反之提示“超过上限”2.4、温度预警参数设定界面电机编号:温度传感器与相对应电机的编码,有效范围(01-50)。温度上限值:单台电机温度上限预警值设定。语音报警:温度超过上限后,则通过语音进行播报“01号电机,温度超过上限,当前温度为xx℃”。报警灯:温度超过上限后,则报警灯开始闪烁,用于警示工作人员。推送次数:当前报警触发后,推送次数值设定。推送间隔:当前报警触发后,每次推送的时间间隔,单位为秒。三、运算层3.1、数据存储转发数据解析后形成电机温度实时数据表。数据表放置与发送数据缓存区中。HTTP服务器实时获取数据缓存区中数据。3.2、数据接收解析无线接收到数据,由数据解析方法进行解析。解析后形成电机温度实时数据表。3.3、无线自组网协议星型拓扑网络:LoRa扩频无线通信技术在1Kbps的速率下在市区环境下,单跳覆盖3KM,使用简单的星型组网就能够建立LoRa微功率网络,而GFSK调制的芯片经常需要树型或者MESH等复杂的路由网络。智能网关:一个LoRa网络中仅有一个智能网关。星型网络中总控制器,负责网络协调。初始化、终止、转发网络中的消息。星型私有网络与以太网桥梁。一分钟内完成50台节点温度数据采集。温度节点:一个LoRa网络可容纳50个温度节点。LoRa无线自组网终端节点,入网后,实时发送温度数据。温度传感器数据采集。3.4、预警参数设定从web前端获取预警参数表。参数解析后更新到内存中。预警任务根据内存参数信息执行动作。3.5、BSP板级支持包RTC驱动提供实时时钟硬件驱动层SPI驱动提供SPI驱动接口硬件驱动层看门狗驱动提供防止程序跑飞硬件驱动层预警灯驱动提供灯光报警控制硬件驱动层串口通信驱动提供串口调试硬件驱动层SD卡驱动提供SD卡硬件驱动层以太网驱动提供以太网硬件驱动层LoRa驱动提供LoRa射频模块硬件驱动层语音播报驱动提供语音报警信息驱动层四、传输层4.1、物联网为什么到现在才开始爆发过去70%的传感器及设备无法连接!2G/3G/4G、WIFI只解决了视频、图像、语音的等方面应用。2G/3G/4G/功耗大、成本高、覆盖并不完善。WIFI、ZIGBEE、蓝牙距离短,很多应用场景无法满足;那些需要电池供电,广域覆盖、又需要长时间低功耗待机的设备无法适应。4.2、LoRa技术优势164dB链路预算 、距离>15km快速、灵活的基础设施易组网且投资成本较少LoRa节点模块仅用于通讯电池寿命长达10年免牌照的频段 网关/路由器建设和运营 、节点/终端成本低4.3、LoRa扩频技术用户数据的原始信号与扩展编码位流进行XOR(异或)运算。生成发送信号流,这样的调制带来的影响是传输信号的带宽有显著添加(扩展了频谱)。从各种类型的噪声和多径失真中获得免疫性;得到信噪比的增益。使用扩频通信抗干扰性更强,通信距离更远。五、感知层5.1、数据采集为了保证温度准确性和可靠性,每台电机安装三只温度传感器。温度测量范围为-55℃~+125℃,测量精度为±0.5℃。数字温度传感器,体积小,成本低,抗干扰能力强。5.2、数据发送采用LoRa扩频通信技术,与网关进行交互,定时发送温度数据。5.3、能量管理采用AC220V转DC5V内置电源模块工作模式共计三种:射频发送数据温度采集低功耗模式平时处于低功耗模式5.4、掉电检测内置市电检测电路,当市电断电后,采用超级电容供电,并发送一次温度数据(温度+电源状态)。六、产品设计6.1、甘特图计划表了解详情

阿里AliOS Things lorawanapp应用介绍

摘要: 文本旨介绍AliOS Things的lorawanapp的示例,完成一个LoRaWAN网络的构建和数据传输,并通过该示例让大家对AliOS Things有一个初步的了解。AliOS Things 是 AliOS 家族旗下的、面向 IoT 领域的、轻量级物联网嵌入式操作系统。文本旨在给大家示范一下其中的lorawanapp的示例,完成一个LoRaWAN网络的构建和数据传输,并通过该示例让大家...了解详情

唯传技术干货:影响LoRa网关容量的关键因素及扩容技术研究(一)

来源:唯传科技1.概述低功率广域网(LPWAN)是无线通信技术发展的新趋势。与传统网络系统不同,这些系统并不专注于为每个设备实现高数据速率。相反,为这些系统定义的关键性能指标是能效,可扩展性和覆盖率。今天的LPWAN通常被视为由终端节点设备(ED)和网关基站(BS)组成的蜂窝网络。 节点(ED)连接到基站(BS)并由其服务,从而在其周围形成星形拓扑网络。 Lora技术就是其中的典型代表。在本文中...了解详情

使用LoRa Smart Blocks Development Kit来创建LoRaWAN网络

本文将为大家介绍如何用群登科技(Acsip)的LoRa Smart Blocks Development Kit 来创建LoRaWAN网络,开发工具包含LoRa智能型积木组件及正文 Gemtek Indoor Gateway。群登这套LoRa智能型积木组件采用通过LoRa Alliance、CLAA、Actility等多重认证的S76S/S78S LoRa模块,透过感测板(Sensor Board...了解详情

Semtech推出全新工具来改善开发人员使用LoRaWAN协议的体验

高性能模拟和混合信号半导体及先进算法领先供应商SemtechCorporation(Nasdaq:SMTC)今日宣布:推出集成了Semtech的LoRa®器件和无线射频技术(LoRa技术)的微微型(picocell)网关模拟器,其中包括Linux实用程序和Microsoft®Windows支持软件,并提供一个免费的、非商用的LoRaWANTM网络服务器演示平台。全新的工具将帮助低功耗广域网(LPW...了解详情

LoRaWAN优点

导读: 目前,相对于NB-IoT,LoRa是当前最成熟、稳定的窄带物联网通讯技术,其自由组网的私有网络远优于运营商持续不断收费的NB网络,且LoRa一次组网终身不需缴费。但是应用LoRa进行物联网通讯开发难度大、周期长、进入门槛高。1 长距离得益于扩频调制和前向纠错码的增益,LoRa取得大约2倍蜂窝技术(手机)的通信距离。长距离的“优秀基因”,使LoRaWAN可以使用star(星型)网络拓扑,相比...了解详情

LoRa调制技术究竟给我们带来了哪些突破?

LoRa是一种专用于无线电扩频调制解调的技术,它与其他如FSK(频移键控)、GMSK(高斯最小频移键控)、BPSK(二进制相移键控)及其派生的调制方案形成明显的对比。它融合了数字扩频、数字信号处理和前向纠错编码技术,拥有前所未有的性能。此前,只有一些军事通讯系统中才会融合这些技术,而随着LoRa的引入,嵌入式无线通信领域的局面发生了彻底的改变。前向纠错编码技术是给待传输数据序列中增加了一些冗余信息...了解详情

LoRa服务器项目概览

前言LoRaWAN 协议定义了系统拓扑,这是我们最常见的系统拓扑图。但当了解到LoRaServerProject时,这套系统拓扑有了更细致的展现,采用 MQTT 来实现 Gateway、NS、AS 的协议处理。深入到这个开源项目中,会体会到 MQTT 给这个系统架构所带来的高效率与灵活性。一、工程总体介绍Lora Server project 是一套开源应用软件,实现从 网关接收到节点数据 一直到 应用程序接收到数据 这一段链路的处理。The Lora Server project is an open-source set of applications that fill the gap between the gateways receiving messages from the nodes to just before the applications receiving the data. It provides mechanisms for managing the gateways on the LoRa network, the applications supported, and the devices associated with the applications.整个工程设计地非常灵活,这样可以用不同方式来使用它。例如 LoRa App Server 组件实现 应用服务器组件,为用户提供一套 Web UI 来访问和修改他们的网关、应用程序和节点,还可以通过 gRPC and JSON REST APIs 编程接口来访问系统。而且,API设计地也很灵活,子系统可以用其他相同接口的软件来替代。The project is designed so that it may be used in a very flexible manner. For example the LoRa App Server component implements the application-server component and offers a Web UI for users to access and modify their gateways, applications and nodes. The system can also be accessed via programmatic interfaces implemented in gRPC and JSON REST APIs. Further, the APIs are designed such that the subsystems may be replaced by other software implementing the same interfaces.二、系统架构LoRa nodesLoRa gateway网关从节点接收数据,实现包的转发。LoRa Gateway BridgeLoRa Gateway Bridge负责处理网关的通讯。将网关转发的UDP协议转化成MQTT上的JSON。它比直接用UDP来传输,有如下优点:调试容易下行数据时只要知道网关的相应MQTT主题,MQTT broker 会找到负责相应网关的LoRa Gateway Bridge。使得网关和NS直接可以使用更安全的连接(使用 MQTT over TLS )未来,不同的bridge版本可以处理不同的网关协议,因此其余设备只需要知道 MQTT格式上的JSON串。LoRa ServerLoRa Server组件能知道激活节点会话,当新节点加网时,它会向AS询问这个节点是否可以加入网络,如果准许的话,应该给这个节点采用何种设置。对于激活节点会话,它对接收到的数据包做去重,并且对日期做校正(避免转发攻击),它转发数据给AS,会询问AS是否有东西要回复。除了管理数据流,也可以通过所谓的MAC命令等来管理节点状态。LoRa Server 使用 gRPC API,以方便你建立自己的AS。LoRa App ServerLoRa App Server组件实现了一套对接 LoRa Server 的应用服务器。它提供了针对各个应用或者各个机构的节点管理,也提供了针对各个机构的网关管理。它还提供了用户管理以及针对不同机构、应用的用户的权限分配。它和应用的通讯是使用 JSON over MQTT,使用裸露的APIs。LoRa App Servers提供了一个WEB界面,用来管理网关和节点,也提供API端点,这样它可以集成到你的自有产品中。LoRa App Servers offers a web-interface that can be used for gateway, node and gateway management, but also offers API endpoints so that it can be integrated with your own products.Application应用则通过订阅MQTT主题来接收节点的数据,也能通过MQTT回传数据。如果需要,它可以用 gRPC or JSON REST api 来和AS进行交互。三、功能特性ISM bands满足 Regional Parameters 1.0 。Devices classes目前支持 LoRaWAN Class-A and Class-CAdaptive data-rate (ADR)Channel re-configuration标准只使用了一部分信道,而这边支持信道重配置。Web-interface提供了Web界面,它提供了针对各个应用或者各个机构的节点管理,也提供了针对各个机构的网关管理。它还提供了用户管理以及针对不同机构、应用的用户的权限分配。它和应用的通讯是使用 JSON over MQTT,使用裸露的APIs。APINS和AS都提供了API来集成到你的产品中。如果需要的话,也可以使用 LoRa Server API 来实现一套自己的节点管理系统,来完全替代掉 LoRa App Server 。Gateway management提供了网关管理功能,这样可以管理你的网关,及他们的GPS位置,以及一些他们的性能追踪。LoRa Server 功能设备类型(Device classes)Class ALoRa Server 全面支持 Class-A 设备。接收到的数据会做去重处理,然后转发给AS。当 接收窗口 打开时,LoRa Server 会向 AS poll 下行数据。通过 polling 这种方式,AS 可以按照 速率相应的最大载荷长度 的相关规定来安排下行数据。Class BTodoClass CLoRa Server 全面支持 Class-C 设备。它会记住上一次的接收参数(每个网关接收到的上行数据情况),因此可以判断出最近的那个网关,从而下发下行数据。下行数据可以调用 NetworkServer.PushDataDown API 来处理。带应答的上下行数据(Confirmed data up / down)带应答的上下行数据都是 LoRa Server 来处理,特别是下行数据, LoRa Server 会一直保存着它的序列号,直到等到节点的应答。终端加网(Node activation)LoRa Server 支持 ABP 和 OTAA 两种加网方式。在 ABP 方式中,AS 提供给 LoRa Server 一个 node-session 。在 OTAA 方式中,LoRa Server 会调用将接收到的 join-request 发给 AS,如果准许的话,它会发送 join-accept 给节点。速率自适应(实验阶段)(Adaptive data-rate (experimental))LoRa Server 支持 速率自适应(ADR)。LoRa Server has support for adaptive data-rate (ADR). In order to activate ADR, The node must have the ADR interval and installation margin configured. The first one contains the number of frames after which to re-calculate the ideal data-rate and TX power of the node, the latter one holds the installation margin of the network (the default recommended value is 5dB). From the node-side it is required that the ADR flag is set for each uplink transmission.Important: ADR is only suitable for static devices, thus devices that do not move!网关管理和统计(Gateway management and stats)Gateways can be created either automatically when LoRa Server receives statistics from the gateways or by using the API. Gateway statistics will be aggregated on the given intervals and are exposed through the api API. See also gateway management.接收窗口(Receive windows)Through OTAA and ABP, it is possible to configure which RX window to use for downlink transmissions. This also includes the parameters like data-rate (for RX2) and the delay to use.释放帧序号(Relax frame-counter)A problem with many ABP devices is that after a power-cycle, the frame-counter of the device is reset. Since this reset is not known by LoRa Server it means that all payloads with a frame-counter smaller or equal than the known counter get rejected. In order to work around this issue it is possible to enable the relax frame-counter mode. Important to know, this compromises security!ISM频段(ISM bands)As different regions have have different regulations regarding the license-free bands, you have to specify the ISM band to operate on when starting LoRa Server. At this moment the following ISM bands have been implemented:AS 923AU 915-928CN 470-510CN 779-787EU 433EU 863-870IN 865-867KR 920-923US 902-928了解详情

LoRa无线sx1278&LoraWan协议剖析

1、整体结构双向传输终端(Class A):Class A 的终端在每次上行后都会紧跟两个短暂的下行接收窗口,以此实现双向传输。传输时隙是由终端在有传输需要时安排,附加一定的随机延时(即ALOHA协议)。这种Class A 操作是最省电的,要求应用在终端上行传输后的很短时间内进行服务器的下行传输。服务器在其他任何时间进行的下行传输都得等终端的下一次上行。划定接收时隙的双向传输终端(Class B)...了解详情

SX1301吞吐量是SX1276/8的多少倍?

1 吞吐量,LoRa网关的重要性能从广义上讲,网关是连接2个不同网络的设备。如果一个设备,它能将LoRa无线网络和Internet连接起来,它就是一个LoRa网关。目前,大部分的LoRa网关采用SX1301基带芯片,也有部分使用SX1276/8单信道芯片。那么,SX1301的吞吐量是SX1276/8的多少倍呢?我们一起来探讨。2 误解1:SX1301 = 48个SX1276/有些行业朋友认为,S...了解详情

无线节点的空中唤醒技术解析

无线网络应用中,通常要求节点尽可能休眠,最大限度降低功耗,但又希望节点能尽可能及时地收发无线数据,这似乎是个不可调和的矛盾。但是有个神奇的功能,空中唤醒。节点即使处于休眠,当需要节点工作时可以直接通过无线手段唤醒该节点。很多人第一次听到,都觉得不可思议。希望看完今天这篇文章,你能搞明白这件事。本文首发于微信公众号twowinter,转载请注明作者http://blog.csdn.net/iotisan/点此进入公众号查看。一、介绍本尊贵为IoT小能手,物联网世界的什么东西没见过。(啊!吹个牛逼而已,用得着飞砖头过来吗!过分)这个牛逼功能的英文名是WOR(Wake On Radio)。它在很多上游芯片方案中已经有应用,TI系列的无线芯片中很多都带有这个功能,比如CC1310,以及我正在玩的LoRa芯片SX1276。它在很多网络协议中也已经有应用,B-MAC,X-MAC,甚至大家常见的ZigBee协议中也有一个很少人知道的概念“休眠路由”。它在很多物联网操作系统中也有应用,比如TinyOS,以及在我心中排名第一的Contiki,称之为“radio duty cycling mechanism”。二、基础原理原理简单说,就是在有效数据前头加一段较长的前导码,无线节点进行周期性地唤醒,监听下网络。一旦捕捉到前导码就进入正常的接收流程,若没有就立即休眠,等待下一次唤醒。为了让数据传输时,无线节点不会错过有效数据,机制上要保证前导码的持续时间要略长于节点的休眠时间。图片来源于LoRa官方AN文档《LoraLowEnergyDesign_STD.pdf》。上面是不带应答的情况,如果是单播方式需要应答的话,情况也差不多。三、深入学习好了,有了如上的初步解释,大家应该差不多明白了。接下去的内容会轻微烧脑,希望我的讲解没把大家绕晕。围绕这个基础原理,有一些人做了优化演绎,大致有这些情况。1.前导码变种Contiki的作者Adam Dunkels(假装对外国人很熟,是比较简单地一项装逼手段),他在2011年的论文中介绍了其空中唤醒机制,他将唤醒探针(也就是前导码)做了变化,与普通前导码0101的循环不同,它是将数据包做了多次循环发送。上面是不带应答的情况,而应答的空中唤醒示意图是这样:相同的做法也出现在TinyOS中。2.快速休眠多数据包的前导码方式额外带来了第二种优化方法,可以让节点更加的省电。通常空中唤醒最大难点是会被噪音误唤醒,因为监测前导码是采用信道监听,判断信道的RSSI是否大于某个阈值。一旦有噪音,则这次唤醒就白白耗了一个周期的电。但是噪音有一个特点是,无规则,持续性。由于多个数据包做的前导码中带有固定间隔的休息时间,因此这个休息时间可以用来将前导码和噪音有效区别开。如果不小心被噪音唤醒,节点在接下来没检测到静默周期,则可确认是噪音,那么就立即睡眠以省电。如图:Contiki由于是一个通用型系统,因此这种快速休眠处理方式是在软件层面的优化处理。LoRa的快速休眠方式则有所不同,由于调制技术优势使得其CAD能从噪声中判断有效前导码,所以在第一阶段就能避免误唤醒。另外还有一个优点是在硬件内部(如SX1276系列)就做了优化,可以在未收到完整数据包下就判断是否发给本地址,从而来节点更快做出应对处理。3.传输锁相用通俗的话来讲解深奥的内容一直是本尊的强项,且听我道来:节点A在与中心节点交互过一次之后,中心节点就记住了节点A的发送时刻(所谓的相)和周期。因此在下一次要唤醒节点A的时候,只需根据预估的节点A的唤醒时间点,准点去唤醒节点A就可以了。这一个优化,虽然没有给节点A带来功耗上的优化,却降低了整个网络的负载,提高了信道的利用率。四、展开来说到此为止,关于空中唤醒技术的原理性讲解基本结束。本文只是知识点科普,限于个人水平和精力还无法讲更多更深的东西。如果你是工程师,文中涉及一些概念希望能引起你的注意,抓住关键词去搜索延伸,你应该会得到更多。最直接的,空中唤醒技术在很多行业都是个刚需,可以为你负责的产品增加些卖点,也许你就因此升职加薪走向人生巅峰。其次,你会从一个更高的高度对其他厂家的空中唤醒技术有些认识。我给大家举个例子,限于行业身份,我就不公开说是哪家企业了。XX公司的唤醒算法1. 采用CAD侦听,让LoRa终端更节能;采用锁相同步唤醒技术,让LoRa通信带宽更佳利用;2. 采用快速地址匹配技术,使“非目标地址”LoRa终端快速休眠;3. 采用跳频技术,让唤醒和数据通信从频率是分开,减少干扰;举这个例子,想告诉大家,理解了技术原理后,你就可以看懂别人说的是什么,是否真的很厉害。当然不是说这家公司的产品不过尔尔,你可能理解了这个原理,但实现这些功能的背后肯定有很多付出和技术沉淀,要看到别人有哪些值得学习的地方,纸上谈兵永远是最简单的事情。五、最后在整理这些资料的时候,有一个感悟,虽然这个世界上的很多东西已经很难有大的创新了,但还是有很多优秀的人,踏实地利用自己才华贡献一点点小创新,帮助这个世界变地更美好。在此向Adam Dunkels等前辈致敬!这篇文章写地比较用心,从技术深度上和自我思考的深度上都是目前已产出的文章中比较靠前的。希望你也能喜欢,欢迎留言,收藏,甚至分享它。了解详情

LoRa笔记03 LoRa sx1276 sx1278空中唤醒研究

一、前言前面在无线节点的空中唤醒技术解析中由浅入深地对空中唤醒技术做了讲解,讲地非常好,建议大家多看几遍(卧槽,谁又砸砖头!)。这篇笔记将讲LoRa节点的空中唤醒具体应用。我正在学习LoRa和LoRaWAN,基本按照 官方资料+梳理解析+相关源码 的方式来记录笔记,相信对不少同行者有所帮助,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/二、官方资料1. CAD 模式介绍When in CAD mode, the device will check a given channel to detect LoRa preamble signalCAD的功能的主要介绍是在4.1.6. LoRaTM Modem State Machine Sequences 中的 Channel Activity Detection 小节。在前文的空中唤醒的原理中,已经提到CAD功能是LoRa调制的一个特色,比普通RSSI检测方式要强大得多。随着扩频调制技术的应用,人们在确定可能低于接收机底噪声的信号是否已经使用信道时,面临重重挑战。这种情况下,使用RSSI无疑是行不通的。为了解决这个问题,可使用信道活动检测器(CAD)来检测其他LoRaTM信号。图11显示了CAD的流程:2. 操作原理介绍信道活动检测模式旨在以尽可能高的功耗效率检测无线信道上的LoRa前导码。在CAD模式下, SX1276/77/78快速扫描频段,以检测LoRa数据包前导码。在CAD过程中,将会执行以下操作: - PLL被锁定。 - 无线接收机从信道获取数据的LoRa前导码符号。在此期间的电流消耗对应指定的Rx模式电流。 - 无线接收机及PLL被关闭,调制解调器数字处理开始执行。 - 调制解调器搜索芯片所获取样本与理想前导码波形之间的关联关系。建立这样的关联关系所需的时间仅略小于一个符号周期。在此期间,电流消耗大幅度减少。 - 完成计算后,调制解调器产生CadDone中断信号。如果关联成功,则会同时产生CadDetected信号。 - 芯片恢复到待机模式。 - 如果发现前导码,清除中断,然后将芯片设置为Rx单一或连续模式,从而开始接收数据。信道活动检测时长取决于使用的LoRa调制设置。下图针对特定配置显示了典型CAD检测时长,该时长为LoRa符号周期的倍数。 CAD检测时间内, 芯片在(2SF+32)/BW秒中处于接收模式,其余时间则处于低功耗状态。3. DIO 映射CAD事件等可以利用DIO来通知给其他MCU,手册上给了映射方式。Table 18 DIO Mapping LoRaTM Mode,其中有 CadDone 事件。
Operating ModDIOx MappinDIODIODIODIODIODIO
ALModeReadCadDetecteCadDonFhssChangeChanneRxTimeouRxDon
ClkOuPllLocValidHeadeFhssChangeChanneFhssChangeChanneTxDon
1ClkOuPllLoc...
了解详情

LoRa笔记02 LoRa sx1276 sx1278的发射功率研究

1 前言发射功率也是射频基础指标,目前SX1278可以支持最大20dBm。我正在学习LoRa和LoRaWAN,基本按照 官方资料+梳理解析+相关源码 的方式来记录笔记,相信对不少同行者有所帮助,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/2 官方datasheet资料5.4.2. RF Power AmplifiersPA_HF and PA_LF are high efficiency amplifiers capable of yielding RF power programmable in 1 dB steps from -4 to+14dBm directly into a 50 ohm load with low current consumption. PA_LF covers the lower bands (up to 525 MHz), whilstPA_HF will cover the upper bands (from 779 MHz). The output power is sensitive to the power supply voltage, and typicallytheir performance is expressed at 3.3V.PA_HP (High Power), connected to the PA_BOOST pin, covers all frequency bands that the chip addresses. It permitscontinuous operation at up to +17 dBm and duty cycled operation at up to +20dBm. For full details of operation at +20dBmplease consult section 5.4.3Table 33 Power Amplifier Mode Selection Truth Table
PaSelecModPower RangPout Formul
PA_HF or PA_LF on RFO_HF or RFO_L-4 to +15dBPout=Pmax-(15-O...
了解详情

LoRa笔记01 sx1276 sx1278信号强度RSSI研究

1 前言RSSI信号强度是无线网络中特别被人关注的一个点,尤其是工程部署中。今天在了解LoRa SX1276的RSSI展示,搜寻了一些资料,做如下笔记留念。(留念。。。真没词用了吗。。。本文作者twowinter,转载请注明作者http://blog.csdn.net/iotisan/2 官方资料涉及寄存器官方英文说明5.5.5. RSSI and SNR in LoRaTM ModeThe RSSI values reported by the LoRaTM modem differ from those expressed by the FSK/OOK modem. The followingformula shows the method used to interpret the LoRaTM RSSI values:RSSI (dBm) = -157 + Rssi, (when using the High Frequency (HF) port)orRSSI (dBm) = -164 + Rssi, (when using the Low Frequency (LF) port)The same formula can be re-used to evaluate the signal strength of the received packet:Packet Strength (dBm) = -157 + Rssi, (when using the High Frequency (HF) port)orPacket Strength (dBm) = -164 + Rssi, (when using the Low Frequency (LF) port)Due to the nature of the LoRa modulation, it is possible to receive packets below the noise floor. In this situation, the SNRis used in conjunction of the PacketRssi to compute the signal strength of the received packet:Packet Strength (dBm) = -157 + PacketRssi + PacketSnr * 0.25 (when using the HF port and SNR < 0)orPacket Strength (dBm) = -164 + PacketRssi + PacketSnr * 0.25 (when using the LF port and SNR < 0)Note:1. PacketRssi (in RegPktRssiValue), is an averaged version of Rssi (in RegRssiValue). Rssi can be read at any time(during packet reception or not), and should be averaged to give more precise results.2. The constants, -157 and -164, may vary with the front-end setup of the SX1276/77/78/79 (LnaBoost =1 or 0,presence of an external LNA, mismatch at the LNA input…). It is recommended to adjust these values with a single-pointcalibration procedure to increase RSSI accuracy.3. As signal strength increases (RSSI>-100dBm), the linearity of PacketRssi is not guaranteed and results will divergefrom the ideal 1dB/dB ideal curve. When very good RSSI precision is required over the whole dynamic range of thereceiver, two options are proposed:- Rssi in RegRssiValue offers better linearity. Rssi can be sampled during the reception of the payload (betweenValidHeader and RxDone IRQ), and used to extract a more high-signal RSSI measurement- When SNR>=0, the standard formula can be adjusted to correct the slope:RSSI = -157+16/15 * PacketRssi (or RSSI = -164+16/15 * PacketRssi)中文解读常规情况下,公式是这样:RSSI (dBm) = -157 + Rssi, (高频口)RSSI (dBm) = -164 + Rssi, (低频口)另外在SNR<0的噪声环境下,要按照Packet Strength (dBm) = -157 + PacketRssi + PacketSnr * 0.25 (或者低频时,Packet Strength (dBm) = -164 + PacketRssi + PacketSnr * 0.25)这样的公式。1.PktRssiValue指单个包的信号强度,是收包这段时间内的RSSI的平均值。RssiValue指当前的信号强度。2.如果有加外部LNA,那需要做单点校准,让RSSI显示更准确。3.当信号强度超过-100dBm之后,PacketRssi就不能保证线性,结果会偏离 1dB/dB 的曲线。因此需要做一定的校正。当SNR>0时,可以参考如下公式:RSSI = -157+16/15 * PacketRssi (or RSSI = -164+16/15 * PacketRssi)。当然SNR<0时,还要注意同样做噪声干扰的校正,在公式后面 + PacketSnr * 0.25 。3 代码分析代码中处理信号强度是这样,判断频段是否大于550MHz,据此来进行高频和低频的不同偏移量的处理。int16_t SX1276ReadRssi( RadioModems_t modem ){int16_t rssi = 0;switch( modem ){case MODEM_FSK:rssi = -( SX1276Read( REG_RSSIVALUE ) >> 1 );break;case MODEM_LORA:if( SX1276.Settings.Channel > RF_MID_BAND_THRESH ){rssi = RSSI_OFFSET_HF + SX1276Read( REG_LR_RSSIVALUE );}else{rssi = RSSI_OFFSET_LF + SX1276Read( REG_LR_RSSIVALUE );}break;default:rssi = -1;break;}return rssi;}4 范例假如我们收到这样的信号值:rssi cur: 61,snr: 35pkt rssi:113因为测试频段是433MHz,且SNR>0,因此使用如下公式:RSSI = -164+16/15 * PacketRssi = -164 + 16/15 * 113 = -43.467了解详情